Git merge branche Development into master

Today the standard source control with Visual Studio is GIT. This source control has a lot of powerful features and options.

For me it took some investigation, testing and searching the internet on how to best merge a development branch (or a bugfix branch, etc.) into the main (master) branch.

git checkout master
git merge –squash Development
git commit OR git commit -m “This is a merge from branch to branch at moment x”

What these commands will do is compact all commits to the development branch and add them to the master in one separate commit.

ATTENTION: When you check the source tree you will also notice that there is NO “merge branch” line.

Next I have added an extra branch, commit a change. Last action was to merge the branch using “git merge HotfixOnMaster”:

After merging a complete branch without squashing. Every commit remains in the master history:

Alternative found on makandracards.com:
Squash several Git commits into a single commit
This note shows how to merge an ugly feature branch with multiple dirty WIP commits back into the master as one pretty commit.

git checkout master # Switch to the master branch and make sure you are up to date.
 git fetch # this may be necessary (depending on your git config) to receive updates on origin/master
 git pull
 git merge feature_branch # Merge the feature branch into the master branch.
 git reset origin/master # Reset the master branch to origin's state. Git now considers all changes as unstaged changes. We can add these changes as one commit. Adding, will also add untracked files.
 git add --all
 git commit

Note that this is not touching the feature branch at all. If you would merge the feature branch into the master again at a later stage all of its commits would reappear in the log.
https://makandracards.com/makandra/527-squash-several-git-commits-into-a-single-commit

Git Branching – Branches in a Nutshell

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

3.1 Git Branching – Branches in a Nutshell

Nearly every VCS has some form of branching support. Branching means you diverge from the main line of development and continue to do work without messing with that main line. In many VCS tools, this is a somewhat expensive process, often requiring you to create a new copy of your source code directory, which can take a long time for large projects.

Some people refer to Git’s branching model as its “killer feature,” and it certainly sets Git apart in the VCS community. Why is it so special? The way Git branches is incredibly lightweight, making branching operations nearly instantaneous, and switching back and forth between branches generally just as fast. Unlike many other VCSs, Git encourages workflows that branch and merge often, even multiple times in a day. Understanding and mastering this feature gives you a powerful and unique tool and can entirely change the way that you develop.

Branches in a Nutshell

To really understand the way Git does branching, we need to take a step back and examine how Git stores its data.

As you may remember from Getting Started, Git doesn’t store data as a series of changesets or differences, but instead as a series of snapshots.

When you make a commit, Git stores a commit object that contains a pointer to the snapshot of the content you staged. This object also contains the author’s name and email address, the message that you typed, and pointers to the commit or commits that directly came before this commit (its parent or parents): zero parents for the initial commit, one parent for a normal commit, and multiple parents for a commit that results from a merge of two or more branches.

To visualize this, let’s assume that you have a directory containing three files, and you stage them all and commit. Staging the files computes a checksum for each one (the SHA-1 hash we mentioned in Getting Started), stores that version of the file in the Git repository (Git refers to them as blobs), and adds that checksum to the staging area:

$ git add README test.rb LICENSE

$ git commit -m ‘The initial commit of my project’

When you create the commit by running git commit, Git checksums each subdirectory (in this case, just the root project directory) and stores those tree objects in the Git repository. Git then creates a commit object that has the metadata and a pointer to the root project tree so it can re-create that snapshot when needed.

Your Git repository now contains five objects: three blobs (each representing the contents of one of the three files), one tree that lists the contents of the directory and specifies which file names are stored as which blobs, and one commit with the pointer to that root tree and all the commit metadata.

Figure 9. A commit and its tree

If you make some changes and commit again, the next commit stores a pointer to the commit that came immediately before it.

Figure 10. Commits and their parents

A branch in Git is simply a lightweight movable pointer to one of these commits. The default branch name in Git is master. As you start making commits, you’re given a master branch that points to the last commit you made. Every time you commit, the master branch pointer moves forward automatically.

Note The “master” branch in Git is not a special branch. It is exactly like any other branch. The only reason nearly every repository has one is that the git init command creates it by default and most people don’t bother to change it.

Figure 11. A branch and its commit history

Creating a New Branch

What happens when you create a new branch? Well, doing so creates a new pointer for you to move around. Let’s say you want to create a new branch called testing. You do this with the git branch command:

$ git branch testing

This creates a new pointer to the same commit you’re currently on.

Figure 12. Two branches pointing into the same series of commits

How does Git know what branch you’re currently on? It keeps a special pointer called HEAD. Note that this is a lot different than the concept of HEAD in other VCSs you may be used to, such as Subversion or CVS. In Git, this is a pointer to the local branch you’re currently on. In this case, you’re still on master. The git branch command only created a new branch — it didn’t switch to that branch.

Figure 13. HEAD pointing to a branch

You can easily see this by running a simple git log command that shows you where the branch pointers are pointing. This option is called –decorate.

$ git log –oneline –decorate

f30ab (HEAD -> master, testing) add feature #32 – ability to add new formats to the central interface

34ac2 Fixed bug #1328 – stack overflow under certain conditions

98ca9 The initial commit of my project

You can see the “master” and “testing” branches that are right there next to the f30ab commit.

Switching Branches

To switch to an existing branch, you run the git checkout command. Let’s switch to the new testing branch:

$ git checkout testing

This moves HEAD to point to the testing branch.

Figure 14. HEAD points to the current branch

What is the significance of that? Well, let’s do another commit:

$ vim test.rb

$ git commit -a -m ‘made a change’

Figure 15. The HEAD branch moves forward when a commit is made

This is interesting, because now your testing branch has moved forward, but your master branch still points to the commit you were on when you ran git checkout to switch branches. Let’s switch back to the master branch:

$ git checkout master

Figure 16. HEAD moves when you checkout

That command did two things. It moved the HEAD pointer back to point to the master branch, and it reverted the files in your working directory back to the snapshot that master points to. This also means the changes you make from this point forward will diverge from an older version of the project. It essentially rewinds the work you’ve done in your testing branch so you can go in a different direction.

Note Switching branches changes files in your working directory It’s important to note that when you switch branches in Git, files in your working directory will change. If you switch to an older branch, your working directory will be reverted to look like it did the last time you committed on that branch. If Git cannot do it cleanly, it will not let you switch at all.

Let’s make a few changes and commit again:

$ vim test.rb

$ git commit -a -m ‘made other changes’

Now your project history has diverged (see Divergent history). You created and switched to a branch, did some work on it, and then switched back to your main branch and did other work. Both of those changes are isolated in separate branches: you can switch back and forth between the branches and merge them together when you’re ready. And you did all that with simple branch, checkout, and commit commands.

Figure 17. Divergent history

You can also see this easily with the git log command. If you run git log –oneline –decorate –graph –all it will print out the history of your commits, showing where your branch pointers are and how your history has diverged.

$ git log –oneline –decorate –graph –all

* c2b9e (HEAD, master) made other changes

| * 87ab2 (testing) made a change

|/

* f30ab add feature #32 – ability to add new formats to the

* 34ac2 fixed bug #1328 – stack overflow under certain conditions

* 98ca9 initial commit of my project

Because a branch in Git is actually a simple file that contains the 40 character SHA-1 checksum of the commit it points to, branches are cheap to create and destroy. Creating a new branch is as quick and simple as writing 41 bytes to a file (40 characters and a newline).

This is in sharp contrast to the way most older VCS tools branch, which involves copying all of the project’s files into a second directory. This can take several seconds or even minutes, depending on the size of the project, whereas in Git the process is always instantaneous. Also, because we’re recording the parents when we commit, finding a proper merge base for merging is automatically done for us and is generally very easy to do. These features help encourage developers to create and use branches often. R

A successful Git branching model

By Vincent Driessen
on Tuesday, January 05, 2010

Check out my latest post: An Intro to Decoders

In this post I present the development model that I’ve introduced for some of my projects (both at work and private) about a year ago, and which has turned out to be very successful. I’ve been meaning to write about it for a while now, but I’ve never really found the time to do so thoroughly, until now. I won’t talk about any of the projects’ details, merely about the branching strategy and release management.

Why git?

For a thorough discussion on the pros and cons of Git compared to centralized source code control systems, see the web. There are plenty of flame wars going on there. As a developer, I prefer Git above all other tools around today. Git really changed the way developers think of merging and branching. From the classic CVS/Subversion world I came from, merging/branching has always been considered a bit scary (“beware of merge conflicts, they bite you!”) and something you only do every once in a while.

But with Git, these actions are extremely cheap and simple, and they are considered one of the core parts of your daily workflow, really. For example, in CVS/Subversion books, branching and merging is first discussed in the later chapters (for advanced users), while in every Git book, it’s already covered in chapter 3 (basics).

As a consequence of its simplicity and repetitive nature, branching and merging are no longer something to be afraid of. Version control tools are supposed to assist in branching/merging more than anything else.

Enough about the tools, let’s head onto the development model. The model that I’m going to present here is essentially no more than a set of procedures that every team member has to follow in order to come to a managed software development process.

Decentralized but centralized

The repository setup that we use and that works well with this branching model, is that with a central “truth” repo. Note that this repo is only considered to be the central one (since Git is a DVCS, there is no such thing as a central repo at a technical level). We will refer to this repo as origin, since this name is familiar to all Git users.

Each developer pulls and pushes to origin. But besides the centralized push-pull relationships, each developer may also pull changes from other peers to form sub teams. For example, this might be useful to work together with two or more developers on a big new feature, before pushing the work in progress to origin prematurely. In the figure above, there are subteams of Alice and Bob, Alice and David, and Clair and David.

Technically, this means nothing more than that Alice has defined a Git remote, named bob, pointing to Bob’s repository, and vice versa.

The main branches

At the core, the development model is greatly inspired by existing models out there. The central repo holds two main branches with an infinite lifetime:

  • master
  • develop

The master branch at origin should be familiar to every Git user. Parallel to the master branch, another branch exists called develop.

We consider origin/master to be the main branch where the source code of HEAD always reflects a production-ready state.

We consider origin/develop to be the main branch where the source code of HEAD always reflects a state with the latest delivered development changes for the next release. Some would call this the “integration branch”. This is where any automatic nightly builds are built from.

When the source code in the develop branch reaches a stable point and is ready to be released, all of the changes should be merged back into master somehow and then tagged with a release number. How this is done in detail will be discussed further on.

Therefore, each time when changes are merged back into master, this is a new production release by definition. We tend to be very strict at this, so that theoretically, we could use a Git hook script to automatically build and roll-out our software to our production servers everytime there was a commit on master.

Supporting branches

Next to the main branches master and develop, our development model uses a variety of supporting branches to aid parallel development between team members, ease tracking of features, prepare for production releases and to assist in quickly fixing live production problems. Unlike the main branches, these branches always have a limited life time, since they will be removed eventually.

The different types of branches we may use are:

  • Feature branches
  • Release branches
  • Hotfix branches

Each of these branches have a specific purpose and are bound to strict rules as to which branches may be their originating branch and which branches must be their merge targets. We will walk through them in a minute.

By no means are these branches “special” from a technical perspective. The branch types are categorized by how we use them. They are of course plain old Git branches.

Feature branches

May branch off from:
develop
Must merge back into:
develop
Branch naming convention:
anything except master, develop, release-*, or hotfix-*

Feature branches (or sometimes called topic branches) are used to develop new features for the upcoming or a distant future release. When starting development of a feature, the target release in which this feature will be incorporated may well be unknown at that point. The essence of a feature branch is that it exists as long as the feature is in development, but will eventually be merged back into develop (to definitely add the new feature to the upcoming release) or discarded (in case of a disappointing experiment).

Feature branches typically exist in developer repos only, not in origin.

Creating a feature branch

When starting work on a new feature, branch off from the develop branch.

$ git checkout -b myfeature develop
Switched to a new branch "myfeature"

Incorporating a finished feature on develop

Finished features may be merged into the develop branch to definitely add them to the upcoming release:

$ git checkout develop
Switched to branch 'develop'
$ git merge --no-ff myfeature
Updating ea1b82a..05e9557
(Summary of changes)
$ git branch -d myfeature
Deleted branch myfeature (was 05e9557).
$ git push origin develop

The --no-ff flag causes the merge to always create a new commit object, even if the merge could be performed with a fast-forward. This avoids losing information about the historical existence of a feature branch and groups together all commits that together added the feature. Compare:

In the latter case, it is impossible to see from the Git history which of the commit objects together have implemented a feature—you would have to manually read all the log messages. Reverting a whole feature (i.e. a group of commits), is a true headache in the latter situation, whereas it is easily done if the --no-ff flag was used.

Yes, it will create a few more (empty) commit objects, but the gain is much bigger than the cost.

Release branches

May branch off from:
develop
Must merge back into:
develop and master
Branch naming convention:
release-*

Release branches support preparation of a new production release. They allow for last-minute dotting of i’s and crossing t’s. Furthermore, they allow for minor bug fixes and preparing meta-data for a release (version number, build dates, etc.). By doing all of this work on a release branch, the develop branch is cleared to receive features for the next big release.

The key moment to branch off a new release branch from develop is when develop (almost) reflects the desired state of the new release. At least all features that are targeted for the release-to-be-built must be merged in to develop at this point in time. All features targeted at future releases may not—they must wait until after the release branch is branched off.

It is exactly at the start of a release branch that the upcoming release gets assigned a version number—not any earlier. Up until that moment, the develop branch reflected changes for the “next release”, but it is unclear whether that “next release” will eventually become 0.3 or 1.0, until the release branch is started. That decision is made on the start of the release branch and is carried out by the project’s rules on version number bumping.

Creating a release branch

Release branches are created from the develop branch. For example, say version 1.1.5 is the current production release and we have a big release coming up. The state of develop is ready for the “next release” and we have decided that this will become version 1.2 (rather than 1.1.6 or 2.0). So we branch off and give the release branch a name reflecting the new version number:

$ git checkout -b release-1.2 develop
Switched to a new branch "release-1.2"
$ ./bump-version.sh 1.2
Files modified successfully, version bumped to 1.2.
$ git commit -a -m "Bumped version number to 1.2"
[release-1.2 74d9424] Bumped version number to 1.2
1 files changed, 1 insertions(+), 1 deletions(-)

After creating a new branch and switching to it, we bump the version number. Here, bump-version.sh is a fictional shell script that changes some files in the working copy to reflect the new version. (This can of course be a manual change—the point being that some files change.) Then, the bumped version number is committed.

This new branch may exist there for a while, until the release may be rolled out definitely. During that time, bug fixes may be applied in this branch (rather than on the develop branch). Adding large new features here is strictly prohibited. They must be merged into develop, and therefore, wait for the next big release.

Finishing a release branch

When the state of the release branch is ready to become a real release, some actions need to be carried out. First, the release branch is merged into master (since every commit on master is a new release by definition, remember). Next, that commit on master must be tagged for easy future reference to this historical version. Finally, the changes made on the release branch need to be merged back into develop, so that future releases also contain these bug fixes.

The first two steps in Git:

$ git checkout master
Switched to branch 'master'
$ git merge --no-ff release-1.2
Merge made by recursive.
(Summary of changes)
$ git tag -a 1.2

The release is now done, and tagged for future reference.

Edit: You might as well want to use the -s or -u <key> flags to sign your tag cryptographically.

To keep the changes made in the release branch, we need to merge those back into develop, though. In Git:

$ git checkout develop
Switched to branch 'develop'
$ git merge --no-ff release-1.2
Merge made by recursive.
(Summary of changes)

This step may well lead to a merge conflict (probably even, since we have changed the version number). If so, fix it and commit.

Now we are really done and the release branch may be removed, since we don’t need it anymore:

$ git branch -d release-1.2
Deleted branch release-1.2 (was ff452fe).

Hotfix branches

May branch off from:
master
Must merge back into:
develop and master
Branch naming convention:
hotfix-*

Hotfix branches are very much like release branches in that they are also meant to prepare for a new production release, albeit unplanned. They arise from the necessity to act immediately upon an undesired state of a live production version. When a critical bug in a production version must be resolved immediately, a hotfix branch may be branched off from the corresponding tag on the master branch that marks the production version.

The essence is that work of team members (on the develop branch) can continue, while another person is preparing a quick production fix.

Creating the hotfix branch

Hotfix branches are created from the master branch. For example, say version 1.2 is the current production release running live and causing troubles due to a severe bug. But changes on develop are yet unstable. We may then branch off a hotfix branch and start fixing the problem:

$ git checkout -b hotfix-1.2.1 master
Switched to a new branch "hotfix-1.2.1"
$ ./bump-version.sh 1.2.1
Files modified successfully, version bumped to 1.2.1.
$ git commit -a -m "Bumped version number to 1.2.1"
[hotfix-1.2.1 41e61bb] Bumped version number to 1.2.1
1 files changed, 1 insertions(+), 1 deletions(-)

Don’t forget to bump the version number after branching off!

Then, fix the bug and commit the fix in one or more separate commits.

$ git commit -m "Fixed severe production problem"
[hotfix-1.2.1 abbe5d6] Fixed severe production problem
5 files changed, 32 insertions(+), 17 deletions(-)

Finishing a hotfix branch

When finished, the bugfix needs to be merged back into master, but also needs to be merged back into develop, in order to safeguard that the bugfix is included in the next release as well. This is completely similar to how release branches are finished.

First, update master and tag the release.

$ git checkout master
Switched to branch 'master'
$ git merge --no-ff hotfix-1.2.1
Merge made by recursive.
(Summary of changes)
$ git tag -a 1.2.1

Edit: You might as well want to use the -s or -u <key> flags to sign your tag cryptographically.

Next, include the bugfix in develop, too:

$ git checkout develop
Switched to branch 'develop'
$ git merge --no-ff hotfix-1.2.1
Merge made by recursive.
(Summary of changes)

The one exception to the rule here is that, when a release branch currently exists, the hotfix changes need to be merged into that release branch, instead of develop. Back-merging the bugfix into the release branch will eventually result in the bugfix being merged into develop too, when the release branch is finished. (If work in develop immediately requires this bugfix and cannot wait for the release branch to be finished, you may safely merge the bugfix into develop now already as well.)

Finally, remove the temporary branch:

$ git branch -d hotfix-1.2.1
Deleted branch hotfix-1.2.1 (was abbe5d6).

Summary

While there is nothing really shocking new to this branching model, the “big picture” figure that this post began with has turned out to be tremendously useful in our projects. It forms an elegant mental model that is easy to comprehend and allows team members to develop a shared understanding of the branching and releasing processes.

A high-quality PDF version of the figure is provided here. Go ahead and hang it on the wall for quick reference at any time.

Update: And for anyone who requested it: here’s the gitflow-model.src.key of the main diagram image (Apple Keynote).


Git-branching-model.pdf

Git-branching-model

If you want to get in touch, I’m @nvie on Twitter.

Release artifacts and artifact sources

https://docs.microsoft.com/en-us/azure/devops/pipelines/release/artifacts?view=vsts

18 minutes to read

Contributors

Alex Homer

Steve Danielson

https://github.com/elbatk

David Staheli

Note

Build and release pipelines are called definitions in TFS 2018 and in older versions. Service connections are called service endpoints in TFS 2018 and in older versions.

A release is a collection of artifacts in your DevOps CI/CD processes. An artifact is a deployable component of your application. Azure Pipelines can deploy artifacts that are produced by a wide range of artifact sources, and stored in different types of artifact repositories.

When authoring a release pipeline, you link the appropriate artifact sources to your release pipeline. For example, you might link an Azure Pipelines build pipeline or a Jenkins project to your release pipeline.

When creating a release, you specify the exact version of these artifact sources; for example, the number of a build coming from Azure Pipelines, or the version of a build coming from a Jenkins project.

After a release is created, you cannot change these versions. A release is fundamentally defined by the versioned artifacts that make up the release. As you deploy the release to various stages, you will be deploying and validating the same artifacts in all stages.

A single release pipeline can be linked to multiple artifact sources, of which one is the primary source. In this case, when you create a release, you specify individual versions for each of these sources.

Artifacts in a pipeline and release

Artifacts are central to a number of features in Azure Pipelines. Some of the features that depend on the linking of artifacts to a release pipeline are:

  • Auto-trigger releases. You can configure new releases to be automatically created whenever a new version of an artifact is produced. For more details, see Continuous deployment triggers. Note that the ability to automatically create releases is available for only some artifact sources.
  • Trigger conditions. You can configure a release to be created automatically, or the deployment of a release to a stage to be triggered automatically, when only specific conditions on the artifacts are met. For example, you can configure releases to be automatically created only when a new build is produced from a certain branch.
  • Artifact versions. You can configure a release to automatically use a specific version of the build artifacts, to always use the latest version, or to allow you to specify the version when the release is created.
  • Artifact variables. Every artifact that is part of a release has metadata associated with it, exposed to tasks through variables. This metadata includes the version number of the artifact, the branch of code from which the artifact was produced (in the case of build or source code artifacts), the pipeline that produced the artifact (in the case of build artifacts), and more. This information is accessible in the deployment tasks. For more details, see Artifact variables.
  • Work items and commits. The work items or commits that are part of a release are computed from the versions of artifacts. For example, each build in Azure Pipelines is associated with a set of work items and commits. The work items or commits in a release are computed as the union of all work items and commits of all builds between the current release and the previous release. Note that Azure Pipelines is currently able to compute work items and commits for only certain artifact sources.
  • Artifact download. Whenever a release is deployed to a stage, by default Azure Pipelines automatically downloads all the artifacts in that release to the agent where the deployment job runs. The procedure to download artifacts depends on the type of artifact. For example, Azure Pipelines artifacts are downloaded using an algorithm that downloads multiple files in parallel. Git artifacts are downloaded using Git library functionality. For more details, see Artifact download.

Artifact sources

There are several types of tools you might use in your application lifecycle process to produce or store artifacts. For example, you might use continuous integration systems such as Azure Pipelines, Jenkins, or TeamCity to produce artifacts. You might also use version control systems such as Git or TFVC to store your artifacts. Or you can use repositories such as Package Management in Visual Studio Team Services or a NuGet repository to store your artifacts. You can configure Azure Pipelines to deploy artifacts from all these sources.

By default, a release created from the release pipeline will use the latest version of the artifacts. At the time of linking an artifact source to a release pipeline, you can change this behavior by selecting one of the options to use the latest build from a specific branch by specifying the tags, a specific version, or allow the user to specify the version when the release is created from the pipeline.

Adding an artifact

If you link more than one set of artifacts, you can specify which is the primary (default).

Selecting a default version option

The following sections describe how to work with the different types of artifact sources.


Azure Pipelines

You can link a release pipeline to any of the build pipelines in Azure Pipelines or TFS project collection.

Note

You must include a Publish Artifacts task in your build pipeline. For XAML build pipelines, an artifact with the name drop is published implicitly.

Some of the differences in capabilities between different versions of TFS and Azure Pipelines are:

  • TFS 2015: You can link build pipelines only from the same project of your collection. You can link multiple definitions, but you cannot specify default versions. You can set up a continuous deployment trigger on only one of the definitions. When multiple build pipelines are linked, the latest builds of all the other definitions are used, along with the build that triggered the release creation.
  • TFS 2017 and newer and Azure Pipelines: You can link build pipelines from any of the projects in Azure Pipelines or TFS. You can link multiple build pipelines and specify default values for each of them. You can set up continuous deployment triggers on multiple build sources. When any of the builds completes, it will trigger the creation of a release.

The following features are available when using Azure Pipelines sources:

Feature Behavior with Azure Pipelines sources
Auto-trigger releases New releases can be created automatically when new builds (including XAML builds) are produced. See Continuous Deployment for details. You do not need to configure anything within the build pipeline. See the notes above for differences between version of TFS.
Artifact variables A number of artifact variables are supported for builds from Azure Pipelines.
Work items and commits Azure Pipelines integrates with work items in TFS and Azure Pipelines. These work items are also shown in the details of releases. Azure Pipelines integrates with a number of version control systems such as TFVC and Git, GitHub, Subversion, and external Git repositories. Azure Pipelines shows the commits only when the build is produced from source code in TFVC or Git.
Artifact download By default, build artifacts are downloaded to the agent. You can configure an option in the stage to skip the download of artifacts.
Deployment section in build The build summary includes a Deployment section, which lists all the stages to which the build was deployed.

TFVC, Git, and GitHub

There are scenarios in which you may want to consume artifacts stored in a version control system directly, without passing them through a build pipeline. For example:

  • You are developing a PHP or a JavaScript application that does not require an explicit build pipeline.
  • You manage configurations for various stages in different version control repositories, and you want to consume these configuration files directly from version control as part of the deployment pipeline.
  • You manage your infrastructure and configuration as code (such as Azure Resource Manager templates) and you want to manage these files in a version control repository.

Because you can configure multiple artifact sources in a single release pipeline, you can link both a build pipeline that produces the binaries of the application as well as a version control repository that stores the configuration files into the same pipeline, and use the two sets of artifacts together while deploying.

Azure Pipelines integrates with Team Foundation Version Control (TFVC) repositories, Git repositories, and GitHub repositories.

You can link a release pipeline to any of the Git or TFVC repositories in any of the projects in your collection (you will need read access to these repositories). No additional setup is required when deploying version control artifacts within the same collection.

When you link a Git or GitHub repository and select a branch, you can edit the default properties of the artifact types after the artifact has been saved. This is particularly useful in scenarios where the branch for the stable version of the artifact changes, and continuous delivery releases should use this branch to obtain newer versions of the artifact. You can also specify details of the checkout, such as whether check out submodules and LFS-tracked files, and the shallow fetch depth.

When you link a TFVC branch, you can specify the changeset to be deployed when creating a release.

The following features are available when using TFVC, Git, and GitHub sources:

Feature Behavior with TFVC, Git, and GitHub sources
Auto-trigger releases You can configure a continuous deployment trigger for pushes into the repository in a release pipeline. This can automatically trigger a release when a new commit is made to a repository. See Triggers.
Artifact variables A number of artifact variables are supported for version control sources.
Work items and commits Azure Pipelines cannot show work items or commits associated with releases when using version control artifacts.
Artifact download By default, version control artifacts are downloaded to the agent. You can configure an option in the stage to skip the download of artifacts.

Jenkins

To consume Jenkins artifacts, you must create a service connection with credentials to connect to your Jenkins server. For more details, see service connections and Jenkins service connection. You can then link a Jenkins project to a release pipeline. The Jenkins project must be configured with a post build action to publish the artifacts.

The following features are available when using Jenkins sources:

Feature Behavior with Jenkins sources
Auto-trigger releases You can configure a continuous deployment trigger for pushes into the repository in a release pipeline. This can automatically trigger a release when a new commit is made to a repository. See Triggers.
Artifact variables A number of artifact variables are supported for builds from Jenkins.
Work items and commits Azure Pipelines cannot show work items or commits for Jenkins builds.
Artifact download By default, Jenkins builds are downloaded to the agent. You can configure an option in the stage to skip the download of artifacts.

Artifacts generated by Jenkins builds are typically propagated to storage repositories for archiving and sharing. Azure blob storage is one of the supported repositories, allowing you to consume Jenkins projects that publish to Azure storage as artifact sources in a release pipeline. Deployments download the artifacts automatically from Azure to the agents. In this configuration, connectivity between the agent and the Jenkins server is not required. Microsoft-hosted agents can be used without exposing the server to internet.

Note

Azure Pipelines may not be able to contact your Jenkins server if, for example, it is within your enterprise network. In this case you can integrate Azure Pipelines with Jenkins by setting up an on-premises agent that can access the Jenkins server. You will not be able to see the name of your Jenkins projects when linking to a build, but you can type this into the link dialog field.

For more information about Jenkins integration capabilities, see Azure Pipelines Integration with Jenkins Jobs, Pipelines, and Artifacts.


Azure Container Registry, Docker, Kubernetes

When deploying containerized apps, the container image is first pushed to a container registry. After the push is complete, the container image can be deployed to the Web App for Containers service or a Docker/Kubernetes cluster. You must create a service connection with credentials to connect to your service to deploy images located there, or to Azure. For more details, see service connections.

The following features are available when using Azure Container Registry, Docker, Kubernetes sources:

Feature Behavior with Docker sources
Auto-trigger releases You can configure a continuous deployment trigger for images. This can automatically trigger a release when a new commit is made to a repository. See Triggers.
Artifact variables A number of artifact variables are supported for builds.
Work items and commits Azure Pipelines cannot show work items or commits.
Artifact download By default, builds are downloaded to the agent. You can configure an option in the stage to skip the download of artifacts.

NuGet and npm packages from Package Management

To integrate with NuGet, or npm (Maven is not currently supported), you must first assign licenses for the Package Management extension from the Marketplace. For more information, see the Package Management Overview.

Scenarios where you may want to consume Package Management artifacts are:

  1. You have your application build (such as TFS, Azure Pipelines, TeamCity, Jenkins) published as a package (NuGet or npm) to Package Management and you want to consume the artifact in a release.
  2. As part of your application deployment, you need additional packages stored in Package Management.

When you link a Package Management artifact to your release pipeline, you must select the Feed, Package, and the Default version for the package. You can choose to pick up the latest version of the package, use a specific version, or select the version at the time of release creation. During deployment, the package is downloaded to the agent folder and the contents are extracted as part of the job execution.

The following features are available when using Package Management sources:

Feature Behavior with Package Management sources
Auto-trigger releases You can configure a continuous deployment trigger for packages. This can automatically trigger a release when a package is updated. See Triggers.
Artifact variables A number of artifact variables are supported for packages.
Work items and commits Azure Pipelines cannot show work items or commits.
Artifact download By default, packages are downloaded to the agent. You can configure an option in the stage to skip the download of artifacts.

External or on-premises TFS

You can use Azure Pipelines to deploy artifacts published by an on-premises TFS server. You don’t need to make the TFS server visible on the Internet; you just set up an on-premises automation agent. Builds from an on-premises TFS server are downloaded directly into the on-premises agent, and then deployed to the specified target servers. They will not leave your enterprise network. This allows you to leverage all of your investments in your on-premises TFS server, and take advantage of the release capabilities in Azure Pipelines.

Using this mechanism, you can also deploy artifacts published in one Azure Pipelines subscription in another Azure Pipelines, or deploy artifacts published in one Team Foundation Server from another Team Foundation Server.

To enable these scenarios, you must install the TFS artifacts for Azure Pipelines extension from Visual Studio Marketplace. Then create a service connection with credentials to connect to your TFS server (see service connections for details).

You can then link a TFS build pipeline to your release pipeline. Choose External TFS Build in the Type list.

The following features are available when using external TFS sources:

Feature Behavior with external TFS sources
Auto-trigger releases You cannot configure a continuous deployment trigger for external TFS sources in a release pipeline. To automatically create a new release when a build is complete, you would need to add a script to your build pipeline in the external TFS server to invoke Azure Pipelines REST APIs and to create a new release.
Artifact variables A number of artifact variables are supported for external TFS sources.
Work items and commits Azure Pipelines cannot show work items or commits for external TFS sources.
Artifact download By default, External TFS artifacts are downloaded to the agent. You can configure an option in the stage to skip the download of artifacts.

Note

Azure Pipelines may not be able to contact an on-premises TFS server if, for example, it is within your enterprise network. In this case you can integrate Azure Pipelines with TFS by setting up an on-premises agent that can access the TFS server. You will not be able to see the name of your TFS projects or build pipelines when linking to a build, but you can type these into the link dialog fields. In addition, when you create a release, Azure Pipelines may not be able to query the TFS server for the build numbers. Instead, type the Build ID (not the build number) of the desired build into the appropriate field, or select the Latest build.


TeamCity

To integrate with TeamCity, you must first install the TeamCity artifacts for Azure Pipelines extension from Marketplace.

To consume TeamCity artifacts, start by creating a service connection with credentials to connect to your TeamCity server (see service connections for details).

You can then link a TeamCity build configuration to a release pipeline. The TeamCity build configuration must be configured with an action to publish the artifacts.

The following features are available when using TeamCity sources:

Feature Behavior with TeamCity sources
Auto-trigger releases You cannot configure a continuous deployment trigger for TeamCity sources in a release pipeline. To create a new release automatically when a build is complete, add a script to your TeamCity project that invokes the Azure Pipelines REST APIs to create a new release.
Artifact variables A number of artifact variables are supported for builds from TeamCity.
Work items and commits Azure Pipelines cannot show work items or commits for TeamCity builds.
Artifact download By default, TeamCity builds are downloaded to the agent. You can configure an option in the stage to skip the download of artifacts.

Note

Azure Pipelines may not be able to contact your TeamCity server if, for example, it is within your enterprise network. In this case you can integrate Azure Pipelines with TeamCity by setting up an on-premises agent that can access the TeamCity server. You will not be able to see the name of your TeamCity projects when linking to a build, but you can type this into the link dialog field.


Other sources

Your artifacts may be created and exposed by other types of sources such as a NuGet repository. While we continue to expand the types of artifact sources supported in Azure Pipelines, you can start using it without waiting for support for a specific source type. Simply skip the linking of artifact sources in a release pipeline, and add custom tasks to your stages that download the artifacts directly from your source.


Artifact download

When you deploy a release to a stage, the versioned artifacts from each of the sources are, by default, downloaded to the automation agent so that tasks running within that stage can deploy these artifacts. The artifacts downloaded to the agent are not deleted when a release is completed. However, when you initiate the next release, the downloaded artifacts are deleted and replaced with the new set of artifacts.

A new unique folder in the agent is created for every release pipeline when you initiate a release, and the artifacts are downloaded into that folder. The $(System.DefaultWorkingDirectory) variable maps to this folder.

Note that, at present, Azure Pipelines does not perform any optimization to avoid downloading the unchanged artifacts if the same release is deployed again. In addition, because the previously downloaded contents are always deleted when you initiate a new release, Azure Pipelines cannot perform incremental downloads to the agent.

You can, however, instruct Azure Pipelines to skip the automatic downloadof artifacts to the agent for a specific job and stage of the deployment if you wish. Typically, you will do this when the tasks in that job do not require any artifacts, or if you implement custom code in a task to download the artifacts you require.

In Azure Pipelines, you can, however, select which artifacts you want to download to the agent for a specific job and stage of the deployment. Typically, you will do this to improve the efficiency of the deployment pipeline when the tasks in that job do not require all or any of the artifacts, or if you implement custom code in a task to download the artifacts you require.

Selecting the artifacts to download

Artifact source alias

To ensure the uniqueness of every artifact download, each artifact source linked to a release pipeline is automatically provided with a specific download location known as the source alias. This location can be accessed through the variable:

$(System.DefaultWorkingDirectory)\[source alias]

This uniqueness also ensures that, if you later rename a linked artifact source in its original location (for example, rename a build pipeline in Azure Pipelines or a project in Jenkins), you don’t need to edit the task properties because the download location defined in the agent does not change.

The source alias is, by default, the name of the source selected when you linked the artifact source, prefixed with an underscore; depending on the type of the artifact source this will be the name of the build pipeline, job, project, or repository. You can edit the source alias from the artifacts tab of a release pipeline; for example, when you change the name of the build pipeline and you want to use a source alias that reflects the name of the build pipeline.

The source alias can contain only alphanumeric characters and underscores, and must start with a letter or an underscore

Primary source

When you link multiple artifact sources to a release pipeline, one of them is designated as the primary artifact source. The primary artifact source is used to set a number of pre-defined variables. It can also be used in naming releases.

Artifact variables

Azure Pipelines exposes a set of pre-defined variables that you can access and use in tasks and scripts; for example, when executing PowerShell scripts in deployment jobs. When there are multiple artifact sources linked to a release pipeline, you can access information about each of these. For a list of all pre-defined artifact variables, see variables.

Help and support